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HIGH ORDER FINITE DIFFERENCE METHODS, MULTIDIMENSIONAL LINEAR 

PROBLEMS AND CURVILINEAR COORDINATES 

JAN NORDSTRÖM* AND MARK H. CARPENTERt 

Abstract. Boundary and interface conditions are derived for high order finite difference methods applied 

to multidimensional linear problems in curvilinear coordinates. The boundary and interface conditions lead 

to conservative schemes and strict and strong stability provided that certain metric conditions are met. 

Key words, high-order finite-difference, numerical stability, interface conditions, summation-by-parts, 

variable coefficient 

Subject classification. Applied and Numerical Mathematics 

1. Introduction. Phenomena that require an accurate description of high frequency variation in space 

for long times occur in many important applications such as electromagnetics, acoustics (all cases of wave 

propagation), and direct simulation of turbulent and transitional flow; see for example [l]-[6]. Strictly stable 

high order finite difference methods are well suited for these types of problems (see [7]-[16]) because they 

guarantee accurate results with bounded error growth in time for realistic meshes. 

Most of the development for these types of methods has considered constant coefficient problems on a 

Cartesian mesh. In [17]. [18] stable and conservative boundary and interface conditions were derived for 

the one-dimensional constant coefficient Euler and Navier-Stokes equations on multiple domains. A similar 

technique was used in [19]. [20]. and [21] for Chebyshev spectral methods. 

In this paper we extend the constant coefficient analysis in [17]. [18] to scalar multidimensional linear 

problems in curvilinear coordinates including block interfaces. Related previous work includes investigations 

of the metric derivatives in non-smooth meshes (see [22]. [23]) and the treatment of parabolic and hyperbolic 

systems in curvilinear coordinates on a single domain [14]. 

The rest of this paper will proceed as follows. Section 2. will give some basic definitions. Section 3 

presents the ID difference operators that form the basis of the multidimensional approximation treatment. 

Section 4 defines the linear model problem and discusses well-posedness. Section 5 provides an investigation 

of the discrete problem. Section 6 illustrates numerical experiments and in Section 7 we summarize and 

draw conclusions. 

2. Definitions. Consider the linear initial boundary value problem 

wt   =   P(x.t)w + SF{x.t)    .xeQ   ,t>o. 

(2.1) w    =    Sf(x) :xeQ    .t = 0. 

Lcw    =    Sg[t) ;xeT    ;<>0; 

where P is the differential operator. Lc is the boundary operator, fi is the domain and T is the domain 

boundary. The forcing function SF. the initial function Sf. and the boundary data Sg are the data of the 
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problem; w denotes the difference between a solution with data /. F. g and one with data / + Sf. F + 5F. 

g + Sg. 

The semi-discrete version of (2.1) is 

(Wj)t    =    Q(xj;t)wj+SFj(t)    ,XjeQ    ,t>0. 

(2.2) Wj    =   Sfj .Xj&Q    .t = 0. 

LDWJ    =   Sg{t) .ijer    .t>0. 

where Q is the difference operator approximating the differential operator P. SFj is the forcing function. Sfj 

the initial function. Lj) the discrete boundary operator where numerical boundary conditions are included, 

and Sg the boundary data. It is assumed that (2.2) is a consistent approximation of (2.1). 

2.1. Well-posedness and stability. There are many concepts of well-posedness and stability; see 

[24]. Here we consider the following definitions. 

DEFINITION 1. Problem (2.1) is strongly well posed if the solution w is unique, exists, and satisfies 

(2.3) |Mß + f HI?* < K^iWSfWl + f\\\SF\\l + \\Sg\\2T)dt}; 
Jo Jo 

■where Kc and nc may not depend on SF, Sf, Sg. and \\ ■ \\a and || • ||r are suitable continuous norms. 

DEFINITION 2. Problem (2.2) is strongly stable if for a sufficiently fine mesh the solution Wj satisfies 

(2.4) \\w\\l + f \\w\\ldt < Kde^{\\6f\\l + f\\\SF\\l + \\Sg\\2T)dt}., 
Jo Jo 

where Kd and r}d may not depend on SFj. Sfj. Sg, and || • ||n and \\ ■ ||r are suitable discrete norms. 

DEFINITION 3.   The approximation (2.2) of (2.1) is strictly stable if the analytical and discrete growth 

rates (see (2.3) and (2.4)) satisfy 

(2.5) T}d<T]c + 0[Ax). 

where Ax is the mesh size. 

2.2. Linear algebra relations. For later reference we define some useful matrix operations; see [25]. 

DEFINITION 4. Let A be a p x q matrix, and B be an m x n matrix; then 

I     a0:oB      ■■■      ao.q-iB     ' 

A®B= j : 

\ ap-i.oB    ■ ■ •    ap-i.g-iB ) 

The p x q block matrix A® B is called a Kronecker product. There are a number of rules for Kronecker 

products; see [25]. In this paper we will make frequent use of 

(A ® B)(C <g D) = {AC) ® [BD), 

(2.6) {A®B)T =AT ®BT, 

(A^B)-1=A-1fiB-1. 

Consider the following matrices. 

(2.7) B = BT > 0.    C = CT > 0.    D = diag(d{) > 0, 



where B. C, and B ® C have the structure 

" BL 

(2.8) B 

0 

0 
B1 

.c = 

CL 

0 

0 
cf 

We will need the following lemmas. 

LEMMA  1.   Let C and D be the M x M matrices defined in (2.7)-(2.8).   If the blocks CL-CR have 

dimension r x r and the first and last r components in D are constant, then 

(2-9) CD = DC = C1/2DCl/2 > 0. 

Proof: A direct matrix multiplication leads to (2.9).    O 

LEMMA 2. Let the first and last r components Dk = diag{di).k = 1..... N be constants; let B have q x q 

blocks BL: BR and C have rxr blocks CL-. CR; see (2.7)-(2.8). With A = B&C and D- diag{Dk) we have 

(2.10) AD = DA = A1/2DA1/2 > 0 

if the first (Du ....,Dq) and last (DN_(q_i). ....DM) q-blocks in D are equal.    Proof: By introducing DL - 

(Iq <g Di) with / the identity matrix, the relations (2.6) and lemma 1. the upper left corner of AD becomes 

(BL <g C)DL = BL (g CDi = BL « DiC = DL{BL « C) 

and 

[BL « C)DL = (Bl/2 ® C"2){B]!2 ® D,C'I2) = (B[/2 « CV7)DL{B\!2 « C1/2). 

Positive defmiteness follows directly from the fact that .Dj, > 0.     D 

3. The ID difference operators. The ID difference operators that form the basis for the multidi- 

mensional difference approximations will be presented below, for more information see [17]. [18]. 

3.1.  The discrete differentiation operator. Let U. VU be the numerical approximations of the 

scalar quantities u and ux respectively. The approximation VU of the first derivative 

(3.1) VU = P-1QU:    ux-P-1Qu = Te,    \Te\ = 0{Axm
:Axn) 

where \Te\ = ö(Axm. Ax") means that the approximation of the differential operator is accurate to order 

m in the interior of the domain and to order n at the boundary. Typically we have n = m - 1. The 

summation-by-parts (SBP) operator VU satisfies 

(3.2) 

where 

(3.3) 

[U.VV)P = UNVN - UoVo - [VU, V)P 

(U:V)P = U
T
PV.,    P = PT,    Q + QT = D:    D=zdiag[-l.0!....0A] 

and 0 < pminAxI < P < pmaxAxI.   Operators of the SBP type arise naturally with centered difference 

approximations; for examples see [9]; [15], [12], [26]. 



In this paper we will apply the first derivative operator twice to obtain the second derivative; i.e.. we 

will use 

(3.4) V2U = V{VU).,    uxx-P-1QP-1Qu=Te;    Te = 0{Axm
: Aar") 

despite the fact that we lose two orders of magnitude in accuracy p = m — 2 at the boundaries. The 

second derivative defined in (3.4) satisfies (3.2) with V = BVU', which is completely similar to (u. (bux)x) = 

ubux\l - («,. bux) obtained in the continuous case. For another type of second derivative, see [17]. [18]. 

3.2. The discrete integration operator. The matrix P in the SBP derivative operator is a discrete 

integration operator. 

THEOREM 1. Let the difference operator V = P~XQ defined in (3.1)-(3.3) exists on the interval -1 < 

x < 1.  Then, the matrix P is an integration operator which satisfies 

(3.5) f  (uv)xdx = UTPVV + (VU)TPV 

where U.V are the projections of the continuous functions u.v onto the grid.   Proof: U  PW+{VU)   PV = 

{uv)lN = {uv)]+l = fi_i{uv)xdx.   a 

It is also possible to prove the following theorem. 

THEOREM 2. Let the difference operator P~lQ defined in (S.l)-(S.S) exist on the interval -1 < x < 1 

and be accurate to order m. Then, the matrix P is an integration operator which satisfies 

(3.6) I   uv    dx = UTPV + 0(Axm). 

where U.V are the projections of the continuous functions u.v onto the grid. Sketch of Proof: The proof 

has two parts. The first part shows that (3.6) holds for general polynomials. Next. Weistrass' interpolation 

theorem (see [28]) is used to show that it also holds for continuous functions. 

4. The continuous problem. The definition and specification of the continuous problem is done 

with Cartesian coordinates. After the transformation to curvilinear coordinates we check that the essential 

mathematical properties are preserved. 

4.1.   Cartesian coordinates. The two-dimensional (2D) linear problem considered in this paper is 

ut+Fx + Gy    =   h,    [i.y]6fl,     t>Q 

(4.1) u    =   f.    [x.y]eü.     t = 0 

Lu    =   g,    [x.y]eSn.    t > 0. 

where h.f.g are the data of the problem. L is the boundary operator, and 

F = Fr + Fv
:    F

I = a1u:    F
v = -(bnux + b12uy); 

(42) G^GI + GV,    GI = a7u,    Gv = -(b21ux + b72uy). 

The coefficients aj. &,-.,• are known functions of x.y. and t. For simplicity we have chosen Q = [x.y] € 

[—1.1] x [0; 1]; see figure 4.1. For future reference we also introduce 

(4.3) a = (ai,a2),    F = (F.G).    n = (m!n2)! 

where n is the outward pointing unit normal on SQ. 

Equation (4.1) can be thought of as a model for the Euler. Navier-Stokes. or Maxwell's equations. 
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FIG. 4.1.  The computational domain. 

4.1.1.  The energy estimate. Well-posedness of (4.1) requires that we can obtain an energy estimate. 

(u.v) —  l     I    uv    dxdy,     (u.u) = \\u\\2. 

(4.5) {■u.v)E.w =       (uv)E.wdy;     (u.n)E.w - \W\\E.W 
Jo 

Let 

(4.4) 

(4.e (u; v)N:s = /   [uv)N:Sdx.    \\u\llfs - {u. u)N:s\\u\\2NS = [u: u)N.s 

denote the Li scalar product, the Li norm., the boundary scalar products,, and the boundary norms respec- 

tively. The subscripts E. W. N: S refer to the EAST. WEST: NORTH, and SOUTH boundaries (see figure 

4.1). 

The energy method applied to (4.1) leads to 

IMJ? = - [(«. F1 + 2FV)E - (u: F
1 + 2^)^] 

v v / 

EAST-WEST 
- [(«, G1 + 2GV)N - (u: G

1 + 2Gv)s] 
 w ' 

NORTH-SOUTH 
-[(u,Ft) - (uX:F

T) + (u.Gp - (uy:G')] + [(u:h) + (h:u)\ 

GROWTH 1 "^     GROWTH 2 

(4.7) - [(«,.. Fv) + [Fv.ux) + {uy.G
v) + (Gv

: «„)]. 
v v < 

DISSIPATION 

GROWTH 1 (GR1) and GROWTH 2 (GR2) in (4.7) will lead to a growth or decay in |H|2. but will not 

affect well-posedness. Note that for constant coefficient problems GR1 is zero. To bound ||u||2 in time, the 

first two terms must be bounded using the correct boundary conditions and the DISSIPATION (DI) must 

have the right sign. 

4.1.2.  The dissipation. For a correct sign of DI (see (4.2) and (4.7)) the eigenvalues of B + BT where 

(4.8) B = 
&21      &22 



must be positive; therefore. 

(4.9) fcn > o:  &22 > o,  611622 - r12 + 621j > 0 

is a requirement for well-posedness. 

4.1.3.  Boundary conditions. By integrating the "cross derivative" components of the first two terms 

in (4.7) one obtains 

- f u(FI + 2Fv)\±\dy- J   u(GI + 2Gv)\l0dx=(b12 + b21)u
2\±\\l 

-/   uiia! + [bi2)y)u - 2buu:c)\t\dy - /    u{(a2 + {b2i)x)u - 2b22uy)\ldx. 

The term (&12+ 62i)f2|tilo involves the point values in the four corners of the computational domain. These 

point values cannot be estimated (unless they are artificially specified). Boundary conditions where the 

viscous fluxes (FV.GV) are specified avoid that difficulty and lead to an energy estimate; therefore one 

should specify the total flux (F = F1 + Fv. G - G1 + Gv) or the viscous flux at the boundaries. 

Consider the first two terms in (4.7) and recall the definition (4.3). At x = ±1 with n = (±1.0) we have 

the boundary conditions 

-ai(-l.y.t) = a-n<0 F-n F = Fw(y:t); 

-ai(-l:V:0 = S-H>0 Fv-n = Fv = F^(y.t); 

(      j                            +ai(+l,y!t) = 5-n>0 Fv-n = Fv = F%(y.,t): 

+a1(+l.y.t) = a-n<0 F-n - F = FE(y:t). 

while 

(4.11) 

-02(1.0..*) = a-n<0 F-n - G = Gs{x:t); 

-a2(a:,0.*) = a-n>Q Fv-n = Gv = G%{x.t), 

+a2(xA:t) = a-n>0 Fv ■ n = Gv = G%{x,t), 

+02(1,1..*) = a-n<0 F-n G = GN(x.t), 

are used at y = 0.1 where n = (0.+1) . The boundary conditions (4.10),. (4.11) can also be formulated in 

the following more general way. 

a -nKO    =>      F -n    —    Fsn ■ n 
(412) a-n>0    =»    Fv -n.  =    F?a-fi 

Boundary conditions of the type (4.10). (4.11). (4.12) have been derived in [29] and [20] for the Navier-Stokes 

equations. 

Let us consider the EAST boundary in detail, and let us assume that ai is positive at y = 0. becomes 

negative at y = y0 and remains negative until y = 1. Inserting the boundary conditions (4.10) into (4.7) 

yields 

f u(FI + 2Fv)\Edy = - r\ai{l..y.t)\u2 + 2uFl 
Jo Jo '0 

/•l rVo 
+ /   ai{l:y.,t)u2-2uFEdy = -        |oi|u2 + 2iiFE'dy 

Jy0 Jo 

(4.13) -/   \ai\u
2 + 2uFEdy = - f   \a.\u2 + 2u{a1F

I
B + F%)dy, 

Jy0 Jo 



where (T\ = (1 - |ai|/a1)/2. The requirement that a\ changes sign in the manner described above can be 

relaxed, so (4.13) is a generally valid formula. An entirely similar procedure at the other (WEST. NORTH,. 

SOUTH) boundaries yields the final result: 

-(u, F1 + 2FV)E = -(«, \ai\it)E - 2(u; FE)E: 

{u: F
1 + 2FV)W = -{u, |ai|K)iv - 2{u, Fw)w, 

-{u.. G1 + 2GV)N = -(u. \a2\u)N - 2(u. GN)N: 

(4.14) (u.GI + 2Gv)s = -{u:\a2\u)s-2{u.,Gs)s.. 

w here 

FE = <TIFE + (1 - <TI)FJ; (Ti = (1 - |ai|/ai)/2, 

Fw = crsFw + (1 - «raji'w, <^3 = -(1 + |ai|/ai)/2, 

GN = cr5GN + (1 - «r5)G^; <T5 = (1 - |a2|/a2)/2: 

(4.15) Gs = (T7Gs + (l-<T7)G!^; ff7 = -(l + |a2|/a2)/2. 

Inserting the relations (4.14) and (4.15) into (4.7) leads to 

(4.16) ||w||2<      Y,      -IM + GR1 + GR2 + DL 
I=E.W.N.S W 

where 

f   \ai\u2dy fQ \ai\u2dy 

Jo u7dv Jo u ^ 

J^1|a2|w
2rf2; /_! |a2|u

2cfa: 
»?jv = —7i—r:—l»=i:    ^ -      !       —l«/=o- 

J_1u
2dx J_1u*dx 

The parameters rjE: VW: VN: r/s are strictly positive if ai. a2 are zero for a finite number of points. 

Time-integration of (4.16) leads to an energy estimate of the form (2.3) if (4.9) holds. Provided that 

a solution exists (can be shown by using the Laplace-transform technique or via difference approximations: 

see [30] and [31]). we can conclude that the following theorem holds. 

THEOREM 3. Problem (4-1), (4-10), (4-H) is strongly well posed. 

4.2. Curvilinear coordinates. In this Section we consider problem (4.1) on a curvilinear domain. By 

introducing the transformation t = r.x = x(£. r\. r). y = y{£: r). T) and it's inverse 

(4.17) r = t,    Z = Z(x;y;t):    T) = r)[x,yA).. 

we obtain the transformed equation 

(4.18) (Ju)T + {J(tfu + £XF + tyG))( + {J{r}tu + ij„F + %G))„ = Jh + RHS: 

where 

RHS = u(Jt + {J£t)( + (Jr,^) + F((J£x)s + (Jr,x)v) + G{{Jty)t + (•/%)„)• 



Using the metric relations causes the term RHS to vanish: 

Jit = (x^yT-xTyn) Jr}t = (y(xT - x(yT) 

,. .g.                                  J£x — Vn J£y — -xn 

JVx = -V( J% = x( 

J = x^Vn-x^ J = (txVy ~ ty^*)'1 ■ 

In this paper we will consider the steady version of (4.17); i.e... £ = £(x.y).r] = rj(x.y).   The new 

transformed problem becomes 

JuT + (F)f + (G)„    =    h,    K^Jefi,      r>0: 

(4.20) u    =    f.    [^^Gfi,      r = 0; 

Lu    =    9:    [t;rj\e6Cl..    T>0: 

where h = Jh. f. g are the data of the problem and Cl = [£. »7] £ [-1.1] x [0.1]. The new transformed fluxes 

are 

F= J(F-V£) = FI + FV
;    F

I-a1u;    F
v =-[bnu( + b12uv]: 

(4.21) G= J{F-Vrj) = G7 + Gv
;    G

1 = ä2«.    Gv = -[S2iU{ + 622«,], 

where 

; 02 = Ja • VT?    621 = JV77 • BV£    622 = JV?7 • SVT? 

and B is given in (4.8). 

4.2.1.  The energy method. Let 

(4.23) [u..v)j = j  J  (uv)    Jd£dT),     \\U\\
2

J = (U:U)J: 

(4.24) (u:v)= j    J    (uv)    d^dr),    \\u\\2 = (u, u). 

(4.25) (U.V)E.W =   /    (uf)-E. W      ^:       |Mll W = (U:U)-E.W: 
JO 

(4.26) [u.v)N.s =       (uv)N^s    d£.    \\u\\2NS = (u.u)N.t 

denote the weighted L2 scalar product and norm, the i2 scalar product and norm, the boundary scalar 

products, and boundary norms respectively. The subscripts E.W.N.S refer to the EAST.WEST .NORTH 

and SOUTH boundaries as in figure 4.1. with x. y replaced by £.77. 

The equation corresponding to (4.7) becomes. 

(NIJ)T = - [(«, F1 + 2FV)B - («, F1 + 2FV)W] 
v v ' 

EAST-WEST 

- [(«. G1 + 2GV)N - («.. G7 + 2GV)5] 
> „ - 

NORTH-SOUTH 



- [(«,-£/) - (n^F1) + («, Gfl - («„, Gf)] + J(u, A) + (L u)\ 

GROWTH 1 GROWTH 2 

(4.27) -[(«f,J'v) + (J'V,«f) + K,Gv) + (GV,^)]/ 

DISSIPATION 

Precisely as in the Cartesian case. GR1 and GR2 in (4.27) can lead to a growth or decay in \\u\\j. but will 

not affect well-posedness. The metric relations (4.19) show that in the curvilinear case too. GR1 vanishes 

for constant coefficient problems. Just as in the Cartesian case, we need to assure that DI has the right sign. 

4.2.2. The dissipation. Similar conditions as in the Cartesian case for positive eigenvalues also apply 

in the curvilinear case; see (4.27). Thus we must show that 

(4.28) &ii>0;    622 >0;    &H&22 ~ ( 6l2 2 hl )    >0 

to assure the right sign on DI. The conditions (4.28) hold, since (4.22). (4.8), and (4.9) lead to 2&n = 

JV£T(5 + ßT)V£ > 0.2fe22 = JVT?
T
(5 + BT

)VT) > 0. and 

M» - (^^l) 2 = >u622 " (^^) 2 > 0. 

4.2.3. Boundary conditions. Consider the first two terms in (4.27) and recall the definitions (4.3). 

The outward pointing unit normal on SCI is. 

(4.29) r^ = ±Lr?) = ^;    r?tf;r? = 0..1) = ^; 

where |V£| = JQ + Q and |Vr?| = Jrfc + 77^.   The boundary conditions leading to an energy estimate 

become 

(4.30) 

at £ = ±1. while 

F =   Fwiv-.t).. 
pv 

=      F&{V:t): 
py =    FZfrt), 

F =    FE{v,t) 

(4.31) 

—äi(—1.»7:*) = -Ja-V£<0 JF-VZ = 

-ai[-l.i)..t) = -Ja-V£>0 JFV -V£ = 

4-01(4-1.»?,«) = Ja-V£>0 JFV-V£ = 

+ai(+l;7?:«) = Ja-V£<0 JF-VZ = 

-a2(1.0.t) = -</a-Vr?<0 JF ■ Vr? = G = Gs{t,t), 

-a2(£.0.t) = -Ja-Vr?>0 JFV ■ VT? = Gv = Gv{Z:t)., 

+a2(£;l;«) = Ja-Vr?>0 JFV • Vr? =■ Gv = 6%{t,t), 

+ä2(£.l.t) = Ja-Vr?<0 JF • Vr? = G = Grr^.t) 

should be used at 77 = 0.1. The boundary conditions (4.30). (4.31) can also be formulated as in (4.12). 

The same procedure as in the Cartesian case leads to the estimate 

(4.32) (IMß)x<      £      ^-||^H5 + GR1 + GR2 + DL 
I=E.W.N.S W 

where 

FE = <riFE + (1 - tri)F%t    ax = -(1 - läil/fii), 



1 
Fw = <rsFw + (1 - crz)F&.    cr3 = --(1 + jai|/äi) 

Gjv = <r5Gjv + (1 - ^)G£;    <rB = ^(1 - |a2|/ä2)9 

(4.33) Gs = <nGs + {l-<n)Gv
S:    a7 = --(1 + |ä2|/ä2). 21 

and 

Jo «2^»? Jo U drl 

J_l«2# J-lud£ 

The parameters 77s,. nW:rjN: Vs are strictly positive if äi; ä2 are zero for a finite number of points. 

Time-integration of the estimate (4.32) leads to an energy estimate of the form (2.3) if (4.28) holds. 

Provided that a solution exists we can conclude that the following theorem holds. 

THEOREM 4. Problem (4.20). (4-30). (4-81) is strongly well posed. 

4.3. Interface conditions. Boundary and interface conditions of the flux type (see (4.10); (4.11). 

(4.30); and (4.31)) require extra careful treatment; see [27] for an example. 

4.3.1. Interface conditions in the curvilinear case. To apply the SAT technique [16] on the fluxes 

at an interface between two blocks with different coordinate transformations and matching gridlines (see [17]. 

[18] for the one-dimensional treatment) requires that we identify the continuous part. Matching gridlines at 

£ = £0 = const implies 

(4.34) (3:^1^(^)2,     (j/f)i^(%)2!     {xn)i = {xr,)2;    {yn)i = (yvh 

while we have 

(4.35) (xi)1 = (xi)7:     (j/e)i = (%)2;     Mi^fah:     Mi ± iVnh 

at 77 = »70 = const. The subscripts 1.2 refer to the two coordinate transformations. 

Equations (4.21). (4.19). and (4.34). (4.35) immediately lead to the conclusion that 

(4.36) hfo,ri,T) = F2fo,ii,T),    Gi(ia,ri,T)±G2{ia,Ti,T), 

(4.37) F1{^nQ:r)^F2(^Jio.,T).,    Giß, 170, r) = G2(£; ifo, r); " 

i.e.. F is continuous across £ = const while G is continuous across n = const. 

4.3.2. Interface conditions and vanishing wave speeds. Another problem with flux-interface con- 

ditions appears when the wave speed a goes to zero. Consider the two constant coefficient problems 

ut + F{u)x = 0.    -L<x<0    and   vt + F(v)x = 0.    0 < x < L. 

where F(w) — aw + Fv(w).     Fv(w) = —ewx. Both problems have homogeneous outer boundary conditions 

at  \x\  = L and zero initial data, and they are connected through interface conditions at x — 0.   We 
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will compare the effects of flux-interface conditions (F(u) = F(v).Fv{u) = Fv'(«)) and variable-interface 

conditions (u = v.ux = vx) on the solutions. 

By transforming the problem for v on [O.+I] onto [-1,0] via the transformation x ->■ —£. and then 

replacing £ with x. we obtain 

^'t + A^K = Clpxx: t > 0 

V.- = o. * = o 
(4-38) 5_^ = 0; t>0 

BQ^J = 0. i>0 

-I < x < 0; 

-I < a; < 0, 

x = —L. 

x = 0. 

where ^ = («^O^A = diag(a.-a). and 5_LV-' = 0 denotes the outer boundary conditions.   Bof = 0 

represents the transformed interface conditions 

(4.39) au — eux = av + evx.    —eux = +evx    or    u = v.    ux — —vx. 

We will treat (4.38) as a half-plane problem, which means that we let L -» oc and replace the influence of 

B-L by only admitting bounded solutions as a; —» —oc. 

The Laplace-transform technique applied to (4.38) leads to 

u(x. s) = ai(s)exp (KI(S)X),     V(X. S) = <r2(s) exp (K2(s)a;) 

where s is the dual variable with respect to time and 

a        I, a ,„     s" a /, a s 

Note that both ü. and i; decay away from the boundary a; = 0. 

The interface conditions (4.39) lead to the equation E(s)a = 0 where a = (a-i.a2)
T. A well-posed 

bounded solution is obtained only if det(E(s)) ^ 0 for 5ft(s) > 0. The flux-interface conditions in (4.39 lead 

to 

la — e/ci     —a — EKO   \ ,   ,„, ,, „       /. a . „     s 
(4.40 £*   = =*     <^(£(s)) = -2ea,/(-)2 + -; 

while the variable-interface conditions leads to 

(4.41) S(S)=
(K!    ~K2)      * det{E{s))=2^{^+S-. 

Obviously the flux-interface conditions can lead to unbounded growth for vanishing wave speeds, because 

det[E)a_^0 = 0 independent of s. The variable-interface conditions, on the other hand,, lead to a well-posed 

problem since det[E)a_+Q = 2y/(s/e). 

A similar analysis of the flux-boundary condition au — eux = 0 for the single domain yields det(E(s)) = 

a/2 + \/(a/2)2 + se. Consequently, the problem with unbounded growth for vanishing wave speed does not 

exist in the boundary condition case because det(E)a_i.0 = y (se). 

5. The discrete problem on a curvilinear mesh. In the rest of this paper we will consider the 

transformed problem (4.20), (4.30). (4.31). Note that problem (4.1). (4.10),(4.11) corresponds to the special 

case where r = t. £ = a; and rj = y. For notational simplicity, we ignore the "hat" notation for the fluxes and 

transformed coefficients introduced in (4.20)-(4.22). 
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FlG. 5.1.  The single-domain case in transformed space. 

Let the N x N matrix Pf and the M x M matrix P„ be the ID positive definite matrices defined in 

Section 3.1. A product av is arranged discretely (where av ss AV) in the following way (see Figure 5.1): 

(5.1) AV- 

Ar 

0 

0 

AN-i 

AN 

V Vn 

v2 

:       Vi = 

Vi2 

VN-I ViM-l 

vN ViM 

where Äi = diag(aij). Also, the N x N matrices Jg. Jw-.h and the M x M matrices JN-.JS-, In are 

(5.2) JE 

0    •••   0 

Jw 

1   •••   0 

0    •••   0 

:       h = 

(5.3) JN 

' 0    ■ •   0 ' 

,    ./s = 

' 1    • •   0 " 

,    In = 

' 1    • •   0 " 

. °  • •  1 _ 0    • • °. _ 0    • •  1 _ 

respectively. The subscripts E. W. N. S refers to the EAST. WEST; NORTH, and SOUTH boundaries (see 

figure 5.1). At this point we also define the restriction of U to the boundaries: 

(5.4) UE,w = {JEW <8 IV)U.    UN:s = (k & JN,S)U. 

5.1.  The norms in the transformed problem. The norms and scalar-products corresponding to 

(4.23)-(4.26) are 

(5.5) (U;V)j = UT(Ps®Pv)JV    {UM)j = \\U\\2J: 

(5.6) (U:V)^UT(P^PV)V    (UM) = \\U\\2: 

(5.7) (U, V)E,W = UT{JB.w ® Pn)V = UlwP„VE:W:    \\U\\%IW = {U.U)E.w.. 
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. i i 1 1 A A E* 1 1 E» !• 

€ = -1 
SOUTH 

EAST 

* = +l 

(5.8) 

FIG. 5.2. Schematic showing J requirements necessary for MJ to be a norm: r — 4 and q = 2. 

(U: V)N:S = UT{Pt « JN.S)V = UlsP,:VN:S;    \\U\\JtiS = (U,U)N,3. 

Obviously, the relations (5.6)-(5.8) define norms since P{ and Pn are positive definite matrices. What about 

(Pf « Pn)J in (5.5) ? 

The metric scalar J is defined in (4.19). In matrix formulation we have 

(5.9) J = diag(Ji).i = 1,.... JV    J,- = diag(Jij).j = 1. ....M. 

We need the following theorem. 

THEOREM 5. Let M = P% <g Pv. If the first and last r components in Ji are constants and the first 

(J\..... Jq) and last (J^_^q_i),.... JjvJ q blocks in J are equal, then MJ is a norm. Proof: Lemma 2. with 

B = Pf. C = Pr,., and D - J, with J defined in (5.9). leads directly to MJ = JM = M1'2JM1I2 > 0       D. 

The requirements in theorem 5 are illustrated in figure 5.2 (for r = 4 and q = 2) where r x q values, of J are 

equal in the corners and r. q values of J are constant normal to an rj = const. £ = const boundary respectively. 

A curvilinear transformation with such a J close to SQ is called volume preserving and guarantees that MJ 

is a norm. 

Remark. The conditions in theorem 5 (i.e.. that J must be constant in the first q. r points normal and 

adjacent to the boundary SQ) can be thought of as theoretically ideal conditions. In practise one approaches 

the ideal condition with increasing resolution on a smooth mesh close to the boundary because 

J(i:J)-J(0:3) = M0lVi)(iAt) + O(At2)>    i=h-,q, 

J(Lj)-J(i.,0) = J,(6,0)(JAIJ) + 0(Ar,2).,    j = l,...,rl 

where it is assumed that J(0.j).J(i. 0) are the values of J at the boundaries. This process is illustrated in 

figure 5.3. where the minimum eigenvalue of PD + DP as a function of increasing resolution is shown. The 

minimum eigenvalue goes from a negative value for large Aa; to a positive one for small Ax. 

5.2. The single-domain problem. The discrete formulation of (4.20). (4.30). (4.31) with the SAT 

technique [16] for incorporating flux boundary conditions is 

(5.10) JUT + D(F + Dr,G^h + BC:    17(0)=/. 

where the continuous derivatives F%. Gv are approximated with 

(5.11) D(F = {p-1Qt®I„)F:    DvG=(Iz®P-1Qv)G 
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Gridpolnts 
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and 

(5.12) 

FIG. 5.3. Minimum eigenvalue of PD + DP as a function of Ax. 

BC = (P^JE ® I^i){F - FE) + {P^JB ® I^)(FV - F%) 

+ (P^Jw « /„E3)(P - Fw) + (P^Jw ® IVU){FV - F&) 

+ (7CE5 « P-1 JW)(G - GAT) + {I& « P,_1 JJV)(G
V
 - G£) 

+ (7CE7 « P,-1J5)(G - Gs) + (7{E8 ® iVVs)(Gv - G£). 

The A^ x N matrix Q% and the M x M matrix Q, are defined in Section 3.1. Fluxes with subscripts E. W. N. S 

are boundary data. The matrices Ei - Es will be determined below. 

5.2.1.   The energy method.  Multiplying (5.10) from the left with UT{P( ® Pn). introducing the 

notation M = Pf <g Pn. and adding the transpose of the equation leads to 

{\\U\\2j)T = ~{UT{Qi ® Pv)P + PT(Qj « pn)U] + [UTMh + hTMU\ 
v „ •     v v ' 

A GR2 

(5.13) 

where 

+ -[UT(P( ® QV)G + GT(Pi ® Q%)V] +BT + (BT)1 

B 

BT = UT(JE ® P^i)(P - FE) + UT(JB « P„E2)(P
V - Pj) 
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+ UT(Jw ® PvXa){F - Fw) + UT(Jw « P^U)(FV - F%) 

+ (7T(P?E5 « JN){G - GN) + UT(P^6 ® Jjv)(Gv - G&) 

(5.14) +f/T(PeE7(gJs)(G-G5) + C/T(PeE8® JS)(GV-G£). 

In (5.13) we have assumed that the metric transformation is such that MJ is a norm. Note that the flux 

terms with subscripts are given data. 

The notations and abbreviations 

(5.15) Q( + Ql = B( = JE-JW:    QV+Q* = Bn=JN-Js, 

will be used to expand the A and B in (5.13). We obtain 

A+B = - [!7T(Bf « P„)(Ff + 2FV) + (F1 + 2Fvf(B( ® P„)U]/2 
 „ • 

E-W 
-pT(Pc <g g,)(G7 + 2GV) + (G1 + 2Gvf(Pi & B„)U]/2 

N-S 
{[(£/. D(F

1) + (D(F
T, U)] - [(F': DsU) + [D(U, FT)]}/2 

GR1 
{[{U, D.G1) + (DnG

T., U)] - [(GJ
; DnU) + (DnU, G7)]}/2 

GR1 
(5.16) + [{D(U,FV) + (Fv

;D^U)+(DriU).Gv) + (Gv ,DnU)). 

DI 

Note the close similarity of the discrete energy estimate (5.13); (5.14). (5.16) with the corresponding 

continuous one; see (4.27). Just as in the continuous case GR1 and GR2 will at most create an exponential 

time growth. To obtain an energy estimate we must determine under what conditions the dissipation (DI) is 

negative definite and which values we must assign to the matrices T.\ — Es to obtain bounded contributions 

from the boundary. 

5.2.2.  The numerical dissipation. The DI is 

(5.17) DI = {DiU)TMFv + {FV)TMD(U + {DVU)TMGV + (GV)TMDVU. 

The relationship between the gradients and the fluxes in the continuous case are given in (4.21). In matrix 

formulation for the discrete case we have 

(5.18) 
Fv 

Gv 

Bn    B\2 

Bi\    B21 

D(U 

DVU 

where Bki(i:j) = &*i(&.->7j)- By introducing (5.18) into (5.17) we get 

(5.19) DI = - 
DtU 

DnU 

BuM + MBn    B2iM + MB12 

BX2M + MB21    B22M + MB22 

At this point we need to define M = P% (g Pv in greater detail; we have 

D(U 

Dr,U 

(5.20) 

Hi 
0 

0 
Hf 

,PV = 

*J 
0 

0 
n? 
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We will need the following lemma. 

LEMMA 3. If the blocks H^.Hf have the size q x q. the blocks H^.H^ have the size r x r. and the 

matrices Bki in (5.18) are constant in the first q. r points normal and adjacent to the boundary 8Q, then the 

dissipation DI defined in (5.19) is negative definite.   Proof: Lemma 2 leads to 

BuM + MBu    B21M + MBl2 

Bl2M + MBn    B22M + MB22 

M1?2       0 

0       M1/2 

M1'2       0 

0       M1/2 
>0    D. 2-Bii B\2 + B2\ 

B\2 + B2\        2B22 

Remark. The conditions in lemma 3 (i.e.. that the matrices Bki in (5.18) are constant in the first q.r 

points normal and adjacent to the boundary SQ) can be thought of as theoretically ideal conditions. In 

practise one approaches the ideal condition with increasing resolution, smooth coefficients bjj and a smooth 

mesh; see the Remark on J in Section 5.1. 

5.2.3. Stability. To obtain an energy estimate (given the negative contribution of the DI on the right- 

hand-side of (5.16)) we must assign values to the matrices Ei - E8 in order to obtain a bounded boundary 

contribution. 

Let us start by estimating the terms at the EAST boundary. We have 

(5.21) 

BTE = - {UT[Pv(I/2 - Ei)]FJ + (FJ)T[(J/2 - 1%)PV]U} 

- {UT[PV(I - Ex - E2)]F
y + (FV)T[(I - Ef - I%)PV]U} 

- [UTPVFE + (FE)TPvUl 

where FE = EiFE + E2F£. 

Obviously, the terms involving the viscous fluxes must be removed.   This yields E2 = I - Ei.   By 

observing that F1 = AEU where AE = diag((äx)Nj) (see (4.21) for a definition of äi) we obtain. 

BTE = - UT[Pv(I/2 - Ei)]AB + AE(I/2 ■ 

(5.22) - [UTPVFE + {FE)TPVU]. 

■1%)PV]U 

Now we choose Ei such that (7/2 - EI)AJS = |AB|/2. This choice and an entirely similar procedure at the 

other boundaries yields 

(5-23) "-  l (\\U\\%<      E      -11^11? +GR1 + GR2 + DL 
I=E.W.N.S VI 

where 

(5.24) 

FB = E1FjB + (/y-E1)Fl/
; 

Fw = X3Fw + (Iy-Z3)F&; 

GN — E5G;v + [Ix — ^5)GN: 

Gs = E7G5 + (4 - E7)G£; 

Z1 = (Iy-\AE\AE
1)/2: 

E3 = -(/!/ + |AW|A^
1
)/2: 

E5 = (/,-|A^|A^)/2; 

E7 = -(/a; + |As|A51)/2: 

(5.25) 

and 

E2 = Iy — El.       E4 = — Iy — E3.       E6 = Ix — Es;       Es = —Ix — E7. 

m 
1(U:\AI\U)J + (\AI\U.U)I 

2 (U: U)i 
I=E.W. N. S. 
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The similarity of the discrete energy estimate (5.23) with the corresponding continuous one (see (4.16) 

and (4.32)) implies strict stability. Time-integration of (5.23) leads to an estimate of the form (2.4) if the 

DI has the right sign. i.e.. if lemma 3 holds. We can conclude that the following theorem holds. 

THEOREM 6. The approximation (5.10) of the problem (4-20), (4-30), (4-31) is both strictly and strongly 

stable if lemma 3 holds and Ei - E8 are given by (5.24) ond (5.25). 

5.3. The ID multiple domain problem revisited. Before we consider the 2D multiple-domain 

problem, let us once more look at the ID multiple-domain problem considered in [17]. [18]. 

5.3.1. Derivation of the Q-formulationfor interface problems. Consider the following hyperbolic 

interface problem 

(5.26) iit+ ux = 0.    -l<a:<0:    and    vt+vx = 0.    0 < x < 1 

augmented with suitable initial and boundary data and the interface condition u = v at x = 0.   The 

straightforward approximation of (5.26) is 

Ut + P£
1
QLU = P£\<rL{UN - VQ)eN) 

(5.27) Vt + PR
1
QRV = PR

1
{<?R{VQ - UN)e0) 

where U = [U0t ..,UN)T :eN = (0, ..^O.lJ^V = (V&, ....VM)T:e0 = (1,0..., 0)T. 

The boundary terms from the left (I) and right (R) outer boundaries are ignored.   The formulation 

(5.27) can also be written in the following way: 

(5.28) PWt + {Q + X)W = 0 

where W = {U: V)T..P = diag{PL.,PR)..Q = diag[QL, QR), and 

0 0 
(5.29) 

0 0 
i: = 

+°~R     —0~R 

We can now split up Q + E into a symmetric and a skew-symmetric part as 

^ , v,     (Q + S)-(q + S)T , (Q + S) + (Q + S)T 

v + i- — 2 9 
v v ' , < 

Q-* D 

The 2x2 blocks of Qsk and D corresponding to the nonzero elements in E are 

Qsk = 
0 (O-L - <TR) 

-(O-L-CTR) 0 
t.\ 1 - 2<TL      <rL + o-R 

(TL + O-R    -1-2(TR 

In the sequel, the "tilde" sign will indicate the 4 x 4 block that couples the solutions in the left and right 

domains. Equation (5.28) now becomes 

(5.30) PWt + {Qsk + D)W = 0. 

In [17] it was shown that (5.27) is conservative if CTR = crL - 1. By introducing this condition in Qsk and D 

we obtain the final form of the difference operator 

(5.31) <T = 2 
0 1 

.     D = a 
1 -1 

1 0 -1 1 
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where er = 1/2 — <T£. 

The formulation (5.30). (5.31) hereafter referred to as the Q-formulation is a rearranged form of the orig- 

inal formulation (5.27). However,, the Q-formulation simplifies and even extends the possibility to formulate 

suitable penalty terms for second order derivatives. 

5.3.2.  The Q-formulation for advection-diffusion interface problems. Consider 

(5.32) ut + F{u)s = Q..    -l<z<0:    and   vt + F{v)x = 0.    0 < x < 1 

where F(w) — a(x.t)w — cwx augmented with suitable initial,, boundary, and interface conditions.   An 

approximation of (5.32) using the Q-formulation is 

(5.33) PWt + {Qsk)(AW) - e(Qsk + D2)P~1(Qsk + D3) = D{W 

where W = (U. V)T and P = diag{PL.PR). The matrix A has the values of a(x{.t) on the diagonal. The 

operator Qsk is defined in the previous Section, and 

(5.34) Di = £T,- 
1      -1 

-1 1 
■ = 1.2.3 

as in (5.31).  The dissipation D\ is formulated as acting on W. which is a more general formulation that 

includes penalty on the flux (a\ = aa{0.t)) as well as penalty on the variables. 

We can now prove 

THEOREM 7.   The approximation (5.33). (5.34) °f ^e problem (5.32) with the choices 

(5.35) (T\ < 0.    <r2 = 0;    <r3 = 0 

is conservative and stable. 

Proof: The energy method applied on (5.33) leads to 

||l^||t
2 = {VW: AW) - (V(AW).W) - 2e{VW.VW) - WT B{AW - 2eVW) +IT 

GRl DI 

where VW — P~lQskW and the interface terms IT are defined as 

(5.36) IT: 
W 

VW 

2D1+2eD2P-1D3    e(D2 - D3) 

e(£>2 - Da) 0 

BT 

w 
VW 

J o 

The growth (GR1); the dissipation (DI) and the ordinary boundary terms (BT) match the terms in the 

corresponding continuous estimate perfectly. The choices (5.35) makes the term IT maximally negative 

definite and leads to stability. The approximation (5.33) can now can be written 

(5.37) PWt + Qsk{AW - eP-iQ^W) = DXW, 

which leads to conservation.    D 

It remains to identify the penalty terms and corresponding interface conditions and find out whether 

(5.37) is sufficiently accurate. The equation 

PWt + Q(AW - eP~xQW) = (£>i + (Q - Qsk)A)W + e(Qskp-1Qsk - QP~1Q)W 
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FIG. 5.4.  The multiple domain mesh in transformed space. 

is a formulation of (5.37) in the usual penalty form. Obviously, the penalty terms (denoted by PT) indicate 

that the one-sided first and second derivatives are replaced by first and second derivatives involving the 

adjacent domain, and that dissipation is introduced via D\. 

By introducing 

Q 
sk Q = A;    A = - 

1 " 1 -1 " 
.    Ä = 

2 1 -1 

-(2<Ti + a) 0 

0 (2(7i -a) 

we get PT = AAW+e{A(P~1QW) + QskAW): this result shows that the corresponding interface conditions 

are u = v and ux = vx. Also, because 

„r-l\\T Ä^ = (0!0)T!    A{P-lQ<j>) = {ö{Axr
L-\Axrx1):ö(Axr

L-\,Axrn1)) 

where 4> is a smooth function and r is the order of the approximation at inner points, the approximation 

(5.37) is accurate enough. 

5.4. The 2D multiple-domain problem. In this Section, an interface at £ = 0 with matching 

gridlines (see Figure 5.4) is considered. Matching gridlines implies that the number of points in the t] 

direction (M) is the same on both sides of £ = 0. We will also assume that P% = P^ = Pn. which implies 

that QL -Q^ = Qr,- Note that, in general,, the difference operators D^.D^ can be different in the left and 

right domains and that A£L ^ A£,R and NL ^ NR. 

A multiple-domain Q-formulation of the problem (4.20). (4.30). (4.31) is 

(5.38) JWt + D\kF + DnG = M_1(£>« Y.Pn)W + h + BC;    W(0) = / 

where W — [U. V)T. The solutions in the left (L) and right (R) domains are denoted respectively by U and 

V. and 

(5.39) Dl^M-^Qf^P»),    Dn = M~1(Pi^Qv). 

In (5.38): BC denotes the boundary conditions in (5.10) at the NORTH, EAST; SOUTH, WEST boundaries 

in penalty form, h is the forcing function. / the initial data, and F = F1 + FV.G = G1 + Gv the fluxes 

where 

(5.40) i.eoF1 = AiW,    Fv = -{B11D
,ekW+B12DvW). 
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(5.41) G1 = A,W,    Gv = -(B21DlkW + B22DnW). 

The remaining definitions and notations used in (5.38) are Qsk — Q$ + A. 

(5.42) M = 
ML     0 

0     MR 

J. 
JL     0 

0     JR 
Q( 

Of     0 
0     Qf 

(5.43) 

0 0 
Ä 

0 0 
D. 

0 0 
D 

0 0 

(5.44) P( = 
P[     0 

0     Pf j 
A = -2 

' 1 -1 " 
.    D = 

1 -1 

1   -1 

-1     1 

The matrix coefficient E will be determined by stability requirements. 

5.4.1. Conservation. The Q-formulation automatically leads to conservation: 

THEOREM 8.  The approximation (5.38) of (4-20), (4-30). (4-31) is conservative. 

Proof: Let h = BC = 0. Multiplying (5.38) with the integration operator <frTM where <j> is smooth, and 

observing that Q\k = -{Qf )T + % Qn = -Q? + Bn [B^BV are defined in (5.15)) leads directly to 

fMJWt - {Dlk<j>)TMF - [D^fMG + f{B^ <g PV)F + <ÄT(Pf « Bn)G = 0. 

The approximation (5.38) is conservative; i.e.. it reverses the process of differentiation (second and third 

terms above) and leaves information only at the boundaries (fourth and fifth terms).    D 

5.4.2. Stability. In this Section we will prove the following theorem. 

THEOREM 9.  The approximation (5.38) of the problem (4-20). (4-30), (4-31) is both strictly and strongly 

stable if theorem 6 holds and HPV + PVT. < 0. 

Proof: The energy method applied to (5.38) yields 

(5.45) -£(||W|ß) - GR1 + GR2 + DI + BTE + BTW + BTN + BTS + IT 
at 

where it is assumed that MJ is a norm; the requirements are given in theorem 5. The boundary terms 

BTE + BTw + BTN + BTs are exactly the same as in the single domain case (see (5.24)); while the D% 

operator in GRL GR2. and DI is replaced by £>|* defined in (5.39). Strict and strong stability of (5.38) 

follows if 

(5.46) IT = WTD ® (EP„ + P„Y)W < 0. 

Because D > 0. we need Y,Pn + P^E < 0.    D 

Remark. Because Pv > 0: E < 0 with the first and last r elements in E being constants would satisfy 

condition (5.46). 

6.  Numerical experiments. In the calculations below, we have used the fourth- and sixth-order 

schemes reported in [17] in space and a five-stage fourth-order RK scheme [32] in time. 
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FIG. 6.1. Instability due to vanishing wave speed and flux interface conditions. 

6.1. Vanishing wave speed. For problems with a realistic geometry, one will frequently encounter zero 

wave speed somewhere in the field due to the variation of the metric coefficients, the variable coefficients, or 

(for nonlinear problems) the solution. This difficulty (see Section 4.3.2) particularly severe in one dimension, 

is exemplified in the calculation of Burger's equation shown in Figure 6.1. 

The instability that develops close to zero wave speed when using a penalty on the fluxes at the interfaces 

is evident. With interface conditions applied on the variable instead of the fluxes, the instability disappears. 

Also, if one scales the problem such that U Varies between 1 and 3 instead of 0 and 2 one can use flux 

interface conditions without any sign of instabilities. This anomalous behavior associated with a vanishing 

wave speed occurs with other numerical schemes, and is typically suppressed by adding dissipation (e.g. the 

"Entropy fix'; used with Roe solvers). 

6.2.  Error growth due to varying coefficients. Consider the following ID test problem. 

(6.1) 
Ut + Fx  =  o,   [i,»]efi,  *>o 

on the 2D domain ft = [x. y] £ [0.1] x [0.1]. The variables, fluxes and initial data are 

F=  :)~:~x  .. f = (6.2) «i 

«2 

a(x)u\ 

b(x)u2 

sin (27T:E) 

sin (2TTX) 
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FIG. 6.2.  The error in the growth rate for different transformations. 

The problem (6.1) is 1-periodic in y and has 

(6.3) u1(0.,y.,t) = au2{0:y:t):    ui(l.y.t) = ßu^l.yA), 

as boundary conditions in the z-direction. 

By introducing a 2D curvilinear mesh we obtain 

(6.4) 
JuT + (F)€ + (G),    =    ,0    K^lGfi.    r>0 

«    =    /,    K,«?]€fi,    r = 0 

where F = J&F.G - JTJXF and Q = [£.77] G [0,1] x [0.1].   The problem (6.4) has the same boundary 

conditions as (6.1). 

6.2.1.  The energy growth in ID. The energy growth for the ID (y = 0. r]x - 0) version of (6.1)-(6.4) 

with 

(6.5) a=l + ex,     b = -l + ex:     a = 1.     ß= y/(l +e)/(l - e) 

leads to \\u\\^ = -<r||u||2. The growth rate —e/2 corresponds to a single eigenvalue on the real axis in 

the continuous spectrum. Figure 6.2 shows the error in the sixth-order numerical approximation of this 

eigenvalue for different transformations (x — x(£)). Figure 6.3 shows the convergence (in an I2 sense) of the 

seven eigenvalues with most accurately converged real parts. The convergence rate in both Figures 6.2 and 

6.3 is at least 6. 
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FlG. 6.3.  The error in the growth rate for varying wave speeds. 

Even though the resolved eigenvalues (and eigenvectors) converge at the theoretical rate (see Figures 6.2- 

6.3). there are unresolved eigenvalues and eigenvectors that can generate difficulties. In Figure 6.4. the least 

resolved eigenvector corresponds to an eigenvalue with a negative real part (-4.6529E-03) significantly more 

to the right of the analytical value (-7.5000E-03) than could be expected by the order of the approximation. 

These unresolved eigenvalues and eigenvectors may generate extra large energy growth, as shown in Figure 

6.5. The growth varies with the initial condition. Note that the extra energy growth for a uniform mesh 

can be present only for varying coefficients because otherwise GR1 = (F. DXU) — [DXF. U) = 0. 

6.2.2. The energy growth in 2D. The energy growth for the 2D continuous problems (6.1). (6.4) 

is identically zero with e = 0 in (6.5); i.e.. the I2 norm of the solution remains constant in time. In 

the semi-discrete case, the energy growth is given by (5.45) where GR2 = DI = 0 and the introduction of 

boundary conditions (BTi) and interface conditions (IT) leads to damping. Possible error growth., see (5.16). 

is provided by. 

(6.6) GR1 = -[(U}DeF) - [D(U,F)] - [{ü,DnÖ) - (DVV,&)] 

only. For a linear mapping where the metric coefficients are constants (see Figure 6.6) we obtain D(F = 

D^AiU = A.iD(U. DVG = DVA2U - h.iDnU: which yields GR1 = 0. The error growth is shown in Figure 

6.7. The calculations are fourth-order accurate in time. Note that there is an absolute bound on the error. 

In a nonlinear mapping (see Figure 6.8) the truncation errors in the metric calculation, and consequently 

also in the calculation of the fluxes, leads to GRl^ 0, which in turn can generate error growth (see Figure 
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FlG. 6.4. Eigenvectors related to two most and least resolved eigenvalues. 

6.9). These calculations also are fourth-order accurate in time. Note the enormous time scale in Figures 6.7. 

and 6.9. 

6.3. Navier-Stokes calculations. We consider here a ID viscous shock propagating in accordance 

with a Mach number of 2.0 and a Reynolds number 150 over a 2D domain. The exact solution of the 

Navier-Stokes equation for this case can be found in [33]. At the artificial boundaries, including the circular 

region in the middle, we impose flux boundary conditions by using the penalty formulation on the fluxes 

with exact data from the analytical solution. At the interfaces we impose interface conditions by using the 

penalty formulation on the variables. 

In Figure 6.10. the density and grid for the propagating shock is shown. The shock travels from the lower 

left corner to the upper right corner and has almost passed out of the computational domain that consists of 

12 blocks. The sixth order scheme and 24 gridpoints were used in each sub-domain. The local density errors 

are shown in Figure 6.11. The grid refinement study in Table 6.3 indicate between fifth- and sixth-order 

accuracy in an Li norm, consistent with the theory in [34]. [35]. since we have fifth order accuracy at the 

boundaries and interfaces (see (3.4)) and relatively coarse grids. 

7. Summary and conclusions. We have analyzed boundary and interface conditions for high or- 

der finite difference methods applied to multidimensional linear problems in curvilinear coordinates. The 

investigation focused on the effect of variable coefficients. 

A problem with a norm as a function of the Jacobian was analyzed. Boundary and interface conditions 
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FlG. 6.5. Extra growth due to unresolved features and initial conditions. 

TABLE 6.1 

Twelve subdomains, sixth-order explicit; CFL = 0.3. 

Wave speed 49/65 65/97 97/129 129/193 

-0.25 -4.610 -4.640 -4.722 -4.722 

0.00 -5.115 -4.986 -4.538 -4.657 

0.25 -5.155 -5.253 -5.179 -4.952 

0.50 -5.331 -5.401 -5.467 -5.327 

0.75 -5.523 -5.514 -5.590 -5.565 

1.00 -5.635 -5.622 -5.659 -5.719 

average -5.228 -5.236 -5.193 -5.196 

in both flux and variable formulations have been investigated. Flux boundary conditions lead to energy 

estimates whereas flux interface conditions lead to difficulties if the wave speed approaches zero. 

A new and simplified so called Q-formulation of the penalty method was derived at interfaces. The 

Q-formulation simplifies and extends the formulation and implementation of derivative conditions in both 

one and two dimensions at interfaces. 

It was shown that varying coefficients can cause unbounded error growth via the truncation errors 

even though the boundary and interface conditions are implemented in a stable and dissipative way. The 

error growth may be large due to unresolved features in the solution. Numerical calculations confirmed the 
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theoretical conclusions. 
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Level err 
3       -2.18823 
2       -2.64626 
1        -3.10629 

FlG. 6.11. Local error levels for propagating viscous shock. 
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